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We may again associate with each substitution of J the index (modulo 
p* q® ) of the power into which the substitution transforms all the substitutions 

of C. If this is done Legendre’s law of quadratic reciprocity says that the sub- 
stitution which corresponds to k=p+gq modulo p* q° is: positive unless p and q 
are both of the form 4n+3. It is clear that the positive substitutions of I cor- 

respond to numbers which are either quadratic residues of both p and q, or quad- 

ratic non-residues of both pand gq. The negative substitutions of I correspond 

to numbers which are quadratic residues of only one of the two numbers p, q. 

In abstract group theory the following direct application of the law of 

quadratic reciprocity is evident from the preceding developments. If the group 

of isomorphisms J of the cyclic group of order p* is represented as a number 

group modulo p* all the numbers which are in the subgroup of order 

2 
idues. All the numbers of J may be represented by primes in an infinite number 

of ways since they are only determined with respect to modulus ps. Legendre’s 
law of quadratic reciprocity states that if q is any prime in the subgroup of I 

2 

are quadratic residues of p while the remaining numbers are non-res- 

whose order is then will the numbers which are congruent to p mod q 

B—1 

be in the subgroup of order a of the group of isomorphisms of the ey- 

clic group of order q® , unless both p and q are of the form 4n +3. 

Since the subgroup of order ps, «,<a, contained inJ is composed of the 

numbers which are congruent to 1 modulo p*-™, it follows that the subgroup of 

order sae ane & contained in J is composed of the numbers which are congru- 

ent modulo p*-* to the numbers of the subgroup of order ot When d=2 the 

latter numbers are the quadratic residues of p modulo p. If we multiply these 

numbers by the numbers in the subgroup of order p the products are still quad- 

ratic residues of p. By making «,—«a—1 we have another proof of the theorem 
that a quadratic residue of p if also a quadratic residue of p*. Another particu- 

lar ease is that every subgroup of I whose order is divisible by p*— includes the num- 

bers which are congruent to any of its numbers modulo p. 

While we know some of the properties of the numbers in the subgroups 
of I, little is known in reference to what particular numbers occur in these sub- 

groups. It is evident that pt — 1 occurs in every subgroup of even order. That 

is, when the group constituted by the quadratic residues of p* is of even order, 

—1 is a quadratic residue of p and vice versa. This follows directly from the 

fact that —1 corresponds to the operator of order 2 in J. The numbers 1 and 

—1 are the only ones whose orders are independent of the value of the modulus. 

As has been observed above the numbers whose orders are given powers 

of p can also be directly written down. The determination of the numbers whose 
orders divide p—1 presents difficulties which have not yet been surmounted. If 
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we knew the latter numbers and their orders, we would know the orders of all 

the numbers, since the order of the product of two such numbers is the product 

of their orders. In the case when p==3, the operators whose orders divide p—1 

are 1 and p*— 1. Hence, in this case, the order of every number is known. In 

particular, the primitive roots of p* are the products of p* — 1 into the numbers 

of the form 1+ kp (k being prime to p), as is well known. 

Even the number 2 presents difficulties which have not been overcome. 
That is, we do not know the order of the operator which transforms each opera- 
tor of C into its square. The well known number theory results along this line; 

that is, those which relate to the quadratic character of 2, may be stated in group 

theory language as follows: In the number group formed by the natural num- 

bers which are prime to p and less than p*, the order of 2 divides i a Ap =a 

only when p is of the form 8n+1. When p is not of this form the order of 2 
must involve the highest power of 2 contained in p—1. 

A SHORT PROOF FOR THE NUMBER OF TERMS IN A DETER- 
MINANT WHICH ARE INDEPENDENT OF THE ELE- 

MENTS OF THE PRINCIPAL DIAGONAL. 

By ORLANDO S. STETSON, Syracuse University. 

The problem of finding the number of terms, y(n), in the given deter- 

minant which are independent of the elements of the principal diagonal may be 

reduced to the question of finding the number of terms in the expansion of the 

invertebrate determinant 4, (second formula for k=n, MONTHLY, 1904, page 167). 

Hence 

n(n—1) 
y(n)=n!—n(n—1)! + (n—2)!— n(n—1)(r—2) 

1.2.3 
(n—3)! 

Removing from each of the terms the factor n! and noticing that the first 
two terms are equal but opposite in sign, we have 

1 1 

ti 

If 

a 

fe 

te 

= 

| N 

w 

: i 

w 



85 

NOTE ON THE “th DERIVATIVE OF A DETERMINANT WHOSE 
CONSTITUENTS ARE FUNCTIONS OF A 

GIVEN VARIABLE.* 

By W. J. RUSK. Grinnell, Iowa. 

Let the determinant be D=(a,),........ l.) where the a, 3, .......... , Lare func- 

tions of a variable ¢t. Then 

dD 

aD 

b,’ ¢, May, Oy... 4 

Consider now the expansion 

If we interpret the power of a” as the nth derivative of @ and write instead of 

¢*....... 1° the expression (a,” b, ¢, .......l,), ete., we have, symbolically, 

ad? D 

Suppose now that, symbolically, 

n—1)! 

where +i=n—1. 

Now suppose the symbolic form be interpreted as before and another dif- 
ferentiation with respect to¢ carried out. Then the coefficient of a* b*.... will be 

n! 

where a’+-/’ +......... +i’=n. For this term can be obtained by differentiation from 
terms with exponents one less than a’, /’’, ......... , or 4’, and its coefficient will .be 

(n—1)! (n—1)! 

*Presented to the Ameri:an Mathematical Society (Chicago), April, 1904, 

° 
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ON THE CYCLOTOMIC FUNCTION.* 

By DR. L, E. DICKSON, The University of Chicago. 

1. If p"=1 and p"#1 (m<n), p is called a primitive nth root of unity. 
Let Q,(2) be the equation whose roots are the various nth primitive roots of 

' unity without repetition. Let n=vpr, v not being divisible by the prime p. We 

first prove that 

(1) Qn(2)=Qy (2? )+Q, 

To show that the division is exact, let =,, ....., =, be the distinct vth roots of unity. 

Then £,?, ...., §? differ only as to order from é,, ....., §,. Hence 

==] =] 

Since y—é divides y?—£, the division (1) is exact. If the value z makes the 

quotient vanish, then (2?”)"="=1 if and only if m isa multiple of v, while 
av"! 41; hence z is a primitive nth root of unity. 

We employ (1) as a recursion formula to determine Q,(7). As a perman- 

ent notation, set n=p,” p,"2.....p,", where p,, -...., p, are distinct primes. Then 

(2) Q(7)=Q, +Q, PT"), (x ), 

where p==n~+p,"p,™. In general, for N=p,"p,”....p¢ 7, We get 

in which i, j, ... range from ], ...,¢. Now For «=s, N=n, and 

(3) becomes 

(2"— 1) —1) 
(4) ~ TT Pi] Pi—1) —1).... 

where in the denominator the products extend over the combinations 1, 3, 5, ..... 

at a time of p,, -..., ,; in the numerator, 2, 4, .... at a time. 

Conversely, (1) follows from (4). The terms of (4) in which p, does 

not enter explicitly combine into Q, (x?:"'); those in which p, enters explicitly 

combine into 1+@Q, 

*Read before the American Mathematical Society, Chicago, April 22, 1905. 
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2. The usual proof* of (4) is essentjally only a verification. Since Q,(7) 
=0 gives all the primitive dth roots of unity withour repetition, we have 

(5) (2), -.... 

where d ranges over all the divisors of n; 3 over those of n/p,. When the prod- 
ucts (5) are substituted in the second member of (4), every Q cancels except Q,.. 

In fact, if d=p,%:.....p,% where and each a;<r;, Q, divides ex- 

actly A=1+,C,+,C,-+.... terms of the numerator of (4) and exactly B=,C, + 

,0,+-.. terms of the denominator, ,C, being the number of combinations of ¢ 
things katatime. But A—B=(1—1)t=0. 

3. From equation (4) follows as a corollary the important formula 

1 1 1 

where #(n) denotes the number of positive integers not greater than m and rela- 

tively prime to x. Indeed, if » is a primitive mth root of unity, p” is likewise if 

and only if m is relatively prime to n. But the degree of (4) evidently equals 

the right member of (6). 

It follows from (4) that the polynomial Q,(7) has integral coefficients. 

There are various proofs of the theorem that Q,(x) is algebraically irre- 

ducible, 7. e., can not be expressed as a product of polynomials in z with rational 
coefficients. 

4. Theorem. For an integer «x, the greatest common divisor g of Q,(x) and 

aPi—lislorp,. If g=p,, Q, ts not divisible by p,? unless n=p, =2, x=3 (mod4), 

whence Q, =r+1. 

Dividing the first equation (5) by the second, we get 

(7) + +... +1 =Q,(4).P(2), 

P() being a polynomial in x with integral coefficients. When the left member 

of (7) is divided by x”?:—1, the remainder is l or p,. Hence g=1 or p). 
Let g=p,, so that /?:—1=kp,, k an integer. Substituting kp,+1 for 

z”P: in (7), we obtain p,-+4p,(p,—1)kp,+terms in p,?. This is not divisible 

by p? if p,>2, nor if p,—2 and kis even. If and k=2/+1, then 

4l+-3, whence n/2 must be odd and z=3 (mod4). Suppose that n>2 and n/2= 

p p,"*....ps"*=m=odd. Performing in (4) the divisions of the type (24—-1)+ 
(z*—1), we get 

amt] 8 gm/pm4] Pipipk +. 
(8) 

*On the general principle of the inversion involved, see Dedekind, Crelle, Vol. 54 (1857), pp. 1-26; 

Dirichlet-Dedekind, Zahlentheorie, p. 362; Bachmann, Kreistheilwng, 1872, pp. 8-11, 16, and Zahlentheorie, 
I, pp. 40-42. 

tSee Bachmann, Kreistheilung (Leipzig. Teubner, 1872), pp. 31-43. 
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Since the exponents are all odd, each fraction or its inverse equals 1+/, f 
containing an even number of powers of z. Hence Q is odd (cf. §5). 

5. Theorem. For n=p,":....p,"" and « an integer, Q,(x) is divisible by p, if 

and only if x belongs to the exponent v==n/p," modulo p,; in the contrary case, 

=1 (mod p, ). 

By Fermat’s theorem, z?:=2 (mod p,). Hence by (1), Q,(7)=1 (mod p, ) 

unless Q, (x)=0. Now Q, (2) divides algebraically the function 

—1)+ (av P§—1) = (2 P + (l<eizs). 

Hence if 2”?'=1 (mod p, ), there is an integer k such that kQ, (7) =p; (mod p, ); 

whence Q, is not congruent to 0 (mod p, ). There remains the ease in which 2”/?’ 

is not congruent to 1 (mod p,) for i=2, ....,8. If z” =1 (mod p,), x belongs | 

to the exponent v modulo p, and Q, =0; if 2” —1 is not congruent to 0, its di- 

visor Q, is not congruent to 0 (mod p, ). 

Example. For n=2.3.7, formula (8) gives 

+¢11—79 —78+ 76 

Thus Q,.=1 (mod 2 or 3); Q,,(2)=1 (mod 7) if z=0, —lorz?=+1; 

but Q,2(”) =0 (mod 7) if z?—2+1=0 (mod 7), 7. e., if x belongs to the expon- 

ent v=6. 

Corollary. No one of the prime factors of n except the greatest can divide 

(),(2). 
6. Theorem. If x is a positive integer >1, Q,(2) has a prime factor not 

dividing (m<n), except in the cases n==2, r=2*—1 (kS2); and n=6, 

If n=p", where so that the theorem fol- 

lows from §4. We suppose henceforth that n=p,"-.....p,"", 85 2. 

In view of §1, Q,==A/B, where 

in which i, k, .... run from 2 tos. Now (24-1) , 

Hence Q,,>2/3, where a is the result of retaining only the first term of each 

division in A, # the result of taking twice the first term of each division in B. 

The number of factors 2 introduced in B is ,_10, +410, +....—=2%-®. The expon- 
ent of x in a/f is evidently the degree ¢(n) of Q,. Let 2%/P:P:---Ps=y, Hence 

y an integer>1. In view of § §4-5, it suffices to prove that QY,>p,, the greatest 
of the primes p;, the case n=6, x=2 being an exception. For s>2, we have 

Pp, =5, y®*-1>2p,, the latter being true for y==2. Hence 

Th 
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Qn>(2p, 2299S ’ 

since at least s—2 of the primes py, ...., p, exceed 2, so that the exponent is 

528-2, For s=2, we have p, 53, Sp, unless p, =3, =2, 

whence p, =2, y=2, n==6, r=2. 

Corollary. If x is a positive integer >1, x"—1 has a prime factor not divid- 

ing (m<n), except in the cases n=2, r=2k—-1; n=6, 

DEPARTMENTS. 

SOLUTIONS OF PROBLEMS. 

ALGEBRA. 

Problems 219, 220 were also solved by L. E. Newcomb. No. 222 was also solved by A. H. Holmes. 

223. Proposed by THEODORE L. DE LAND, Office of the Secretary of the Treasury, Washington, D.C. 

An officer in the Treasury Department assigned three clerks to count a lot 

of silver dollars and when finished noted that there was an apparent difference 
in their efficiency ; and, to determine the fact, gave to each a similar lot of the 

same amount to count, the only record made at the time being that A to count 

his lot alone, took three weeks longer, B took two weeks longer, and CO took one 

week longer than it took for all working together to count the first lot. The best 

counter, on the record made, was given an efficiency mark of 93 on the seale of 
100. What efficiency mark should, on the record, be given to each of the other 

‘two counters? 

Solution by the PROPOSER. 

Let r=the time for A, B, and C working together to finish one lot. 

Then z+3=the time for A to finish one lot working alone; 

x+2=the time for B to finish one lot working alone; and 

x+1=the time for C to finish one lot working alone. 

Then + what A, B, and C can do in one week working together ; 

4 =what A can do in one week working alone; 

a3 ==what B can do in one week working alone; and 

saya rhat C can do in one week working alone. 

Kquating like terms we have, 

1 1 1 
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Reducing, we have, 
x3 +32? —3=-0........ (2). 

By Horner’s method, we have from equation (2), x=0.879385+. 

Therefore 

z+3 3.839385’ 2.879380' z+1 1.879385 

It is evident that C is the best clerk and was given the 93% on the effic- 
iency record. The records should be inversely proportional to the time expended 

for equivalent work. In order to compare C and B, and C and A, we have 

: 2+1=93% : B’s mark; 

2+1=93% : A’s mark; 
and therefore, 

2.879385 : 1.879385=—93% : 60.70% —B’s mark; and 
3.879385 : 1.879385—93% : 45.05% =A’s mark. 

Thus, if C were given on the efficiency record 93%, A should be given 

45.05%, and B should be given 60.70%. 

Also solved by G. B. M. Zerr, 8. A. Corey, G. W. Greenwood, F. D. Whitlock, R. D. Carmichael, 

A. H. Holmes, and J. Scheffer. 

224. Proposed by G. W. GREENWOOD, M. A. (Oxon), Lebanon, II. 

Show that, if none of the quantities z, y, z is zero, the result of eliminat- 

ing them from (a+ =deyz ......... (1), 

(y+2)(y+2) =caew........(2), 
(2+2)(2+y)—abzy......... (3), 

is | +a, 1, 1 

Solution by C. H. MILLER, West Point. N. Y., and the PROPOSER. 

By multiplying the second equation by the third, dividing by the first, 
and transposing, we obtain 

From this, and two similar equations, we get the required elimininant. 

Also solved by J. B. Faught, G. B. M. Zerr, R. D. Carmichael, J. Scheffer, and J. O. Mahoney. 

225. Proposed by H. M. ARMSTRONG, Cooch’s Bridge, Delaware. 

If a=ar+cy+0z.......... (1), by+az........ (2), ay cz......... (3), 

show that a8 + 33 +73 —3afy=—(a' +-b* —3abe)(x3 + y3 +23 —3zyz). 

Solution by the PROPOSER. 

The required result follows directly from the equality, 

= 
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afy abe 
yaPl=|cadb 
Bya bea y2u 

Also solved by J. B. Faught, G. B. M. Zerr, G. W. Greenwood, Grace M. Bareis, J. O. Mahoney, 

F. D. Posey, F. O. Whitlock, J. Scheffer. 

«*» Dr. L. E. Dickson points out that a similar theorem holds for any determinant whose matrix is 

the body of a multiplication-table of a finite group. 

GEOMETRY. 

251. Proposed by R. D. CARMICHAEL, Hartselle, Ala. 

Represent the vertices of any regular pelygon by the eonsecutive numbers 
1, 2....p....q....’...n. To find the sides and area of the triangle formed by joining © 
P, q, and r. 

Solution by G. W. GREENWOOD, M. A. (Oxon), Lebanon, II)., and A. H. HOLMES, Brunswick, Me. 

The central angles subtended by the chords (pq) and (qr) are respectively, 

rd 

2(q—p)—— and 2(r—q)—. 

The angle par is found to be =—(r— pP)—. Hence the required area is 

Z pqr=2a?sin(q—p)—.sin (r—q)—.sin (r—p)—, 

where a is the radius of the cireum-circle of the polygon. 

252. Proposed by FREDERICK R. HONEY, Ph. B., Trinity College, Hartford, Conn. 

Two plane mirrors form an angle which is less than 45°. Any two points 
are assumed within this angle in a plane perpendicular to the intersection of the 
mirrors. A ray of light passes through one point, and after being reflected twice 

at each mirror, it passes through the second point. Find the path of the ray. 

Solution by R. A. WELLS. Westminster College, Fulton, Mo.; THEODORE LINQUIST, Wahpeton, N. D.; and 
the PROPOSER. ‘ 

Let oa and ob represent the mirrors; and P and Q the assumed points. 

Draw oe, od, and oe, mak- 

ing each of the angles boc, 

cod, and doe equal to aob. 

Draw Pf perpendicular to 

oa. Make of =of; and draw 

perpendicnlar to oe and 

equal to Pf. Draw QP’, 

intersecting ob at 1, oc at k’, 
od at h', and oe at g’. Make og=og'; oh=oh'; ok=ok'. Join Pg, gh, hk, and kl. 

Pghk1Q is the path of the ray. 

P 
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The Greek letters indicate the equality of certain angles, and will assist 
the reader in the demonstration. © 

Also solved by G. W. Greenwood. 

The following contributors sent in solutions to this department too late for credit in the last issue: 

G. B. M. Zerr solved 245; Theodore Linquist, 248 and 249; A. H. Holmes, 248, 249, and 250. 

253. Proposed by SAMI. JONES, Gunter Bible College. Gunter. Texas. 

The number of cubic inches contained by two equal opposite spherical seg- 

ments, together with the number of cubic inches contained by the cylinder in- 
cluded between these segments, is 600; if this be 3 of the number of cubic inches 

contained by the whole sphere, find the height of the cylinder. 

Solution by THEODORE LINQUIST, Wahpeton, N. Dak.; G. W. GREENWOOD, M. A. (Oxon), Lebanon, III., 
and A. H. HOLMES, Brunswick, Me. 

Let R==the radius of the sphere, and 2h the altitude of the cylander. Then 
R—h=the altitude of the segment of the sphere, and ;/(R?—h?) is the radius 

of the base of the segment and the radius of the cylinder. 
The volume of the two segments=2[{-(R—h)*-+3-(R—h)(R* —h?)], 

and the volume of cylinder=2zh( R* —h?). 

—h*) =the volume of the segments, and the cylinder=3(47R*), 

by the conditions of the problem. 
—h*)=8zh?—600, by the conditions of the problem. 

(225/z). 

Also solved by J. Scheffer. 

CALCULUS. 

191. Proposed by J. E. SANDERS, Hackney, Ohio. 

A fly goes along a radius of a moving carriage wheel from center to cir- 

cumference while the wheel makes n revolutions. If each move uniformly, what 
is the equation to the curve described by the fly in space, and what is its length 

when the wheel has made 1/m of a revolution? 

Solution by G. W. GREENWOOD, M. A. (Oxon), Professor of Mathematics. McKendree College, Lebanon, III. 

Take the path of the center of the wheel as z-axis, and the initial point as 
origin. Let the fly move on a radius making, initially, an angle ¢ with this axis. 
Denote the radius by a. Let C be the position of the center of the wheel, and P 

be that of the fiy after the wheel has turned through an angle w. Then 

dw 
O0C=aw, 

and the codrdinates of the position of P are 

Pixs 
2nz 

. 

i 
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»", An excellent solution was received from Professor Zerr. He takes the 

horizontal line on which the wheel travels as the z-axis, and gets for the equation 

of the path of the fly, 

sin 6 
r=a0(1 a(1 for required length. 

n/ 1+ 6 __ 7, F. 

4x2 n? 

192. Proposed by G. B. M. ZERR, A. M., Ph. D., Parsons, W. Va. 

Show that the volume V of the hyper-ellipsoid with semi-axes a,, @,, @;, 
a,, ete., in space of 2n and 2n+1 dimensions is 

Y, _ dan. 7” Y, _ 

Solution by the PROPOSER. 

2 2 2 2 

Let (£1) +(22) + +(=)=1 be the equation to the hyper- 
1 2 3 r 

all’ 

When r=2n, 

When r=2n-+1, 

+1 TQ) _ +10 Aan +1 

2n+1 1.3. 7.9....(2n+1 

193. Proposed by F. P. MATZ, Sc. D., Ph. D., Reading, Pa. 

Find the eccentricity of the maximum semi-ellipse inscribed in a given 
isosceles triangle. 

I. Solution by G. B. M. ZERR, A. M., Ph. D., Parsons, W. Va., and J. SCHEFFER, Hagerstown, Md. 

Let the mid-point of the base be the origin, a=altitude, b=base of trian- 

gle. Let 2*/m?+y?/n*?=1 be the ellipse. Then 7mn=maximum. 

“n/m=y 

ellipsoid. Then its volume is V=2"- f....dx, dz, dry....dz,. 

S Sly, UY, Uy;...dy,, subject to the condition, 

y 

= 
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Let (h, k) be the tangent point of the ellipse with a side. 

Then a=n?/k, 4b=m? /n, or k/h=2a/b=n/m. Also 2ah+bk=hk. 

“k=sa, And bd=2am. 

4a2— a 
n (eccentricity)? = 

II. Solution by A. H. HOLMES, Brunswick. Me. 

Let 2a—base of the isosceles triangle, and b its perpendicular height. 
Construct on 2a an equilateral triangle, and inscribe in it a semi-circle its 

diameter collinear with base 2a. Then the radius of the semi-circle will be 

a which is one-half the perpendicular of the equilateral triangle. Now con- 

sider this triangle to be projected into an isosceles triangle whose base will be, of 

course, the same as that of the equilateral triangle, but whose perpendicular 

height is 6. The semi-circle inscribed in the equilateral triangle will be projected 

into the maximum semi-ellipse that can be inscribed in the isosceles triangle, 
and one of its semi-axes will have the same proportion to the perpendicular of 
the isosceles triangle that the radius of the semi-circle has to the perpendicular 
of the equilateral triangle. 

— 2 h2 

Eccentricity of ellipse-= or accordingly as 
Vv 

y (a?-+-)*) is greater or less than 2a. If bone of the sides, 

or 
b?—a? ’ ay 3 

Also solved by Jacob Westlund. 

DIOPHANTINE ANALYSIS. 

123. Proposed by L. E. DICKSON. Ph. D.. The University of Chicago. 

Of two numbers a;b,c,d,e; (i=1, 2) itis given that their 10 digits a,,...., e, 

form a permutation of 0, 1, ...,9, and that the sum of the two is 73951. Give 

ant immediate evaluation of 2; also list the possible pairs a,, a, ; .....; €,, @9- 

Solution by the PROPOSER. ; 

Since the sum of the 10 digits is 45, +18 must be a multiple of 9 by the 
pale of casting out of 9’s. Hence r=9. 

Next, on adding the third column there cannot be 1 to carry; otherwise 
és +e, orc,+c,+1 would be 19, andc, 59,c, 59. Hence 

(1) 6,+6,=8, a,+a,=9; or (2) 6,+0,—13, a;+a,=8. 

If e, +e,-=1, the b’s are not 0, 3; nor 1, 2. Hence in this case, 

€,,@,=0,1; 6,+6,=18; a,+a,=—8; d,+d,=—5, c,+e,=—9; 

or d, +d,=15, c,;+c,=8. 
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Thus We a,==2, 6 or 3, 5; d, +d,—15, giving sets I, I] below. Let next e, +e, 

=11. Then d,+d,=—4, c,+c,=—9; or d,+d,—14, ¢,+c,—8. From these and 

(1) or (2), we get ITI.....XI as the only sets. 

I 2,6 4,9 3,5 68 0,1 

Il 3, 5 4,9 2,6 ‘ges 0, 1 

Ill 1,8 0,3 2, 6 5, 9 4,7 

IV 3, 6 1, 2 0, 8 5, 9 4,7 

V 4,5 0,3 1,7 ' 6,8 2,9 

VI 0,9 1, 2 3, 5 6,8 4,7 

VII EE 5, 8 3, 6 0, 4 2,9 

Vill 2, 6 5, 8 0,9 1,3 4,7 

IX 3, 5 6,.7 1,8 0,4 2,9 

0,8 4,9 1,3 5, 6 

XI 0,8 6:7 4,5 1,3 2,9 

Sets VI, X, and XI may properly be excluded. 

Also solved by G. B. M. Zerr. 

MISCELLANEOUS. 

132. Proposed by M. A. GRUBER, A. M., War Department, Washington, D. C. 

Six officers of different grades (1, 2, 3, 4, 5, 6) from each of six branches 

of the army (4a, b, c, d, e, f) are to be arranged in a square so that each rank and 

each file shall have an officer of each grade and each branch. Can it be done? 
If not, prove it. The arrangement of five officers of each kind is easy. 

Remark by L. E. DICKSON, The University of Chicago. 

This problem, proposed in the February, 1903, number, is here repeated 

to call attention to the fact that no solution has yet been sent to theeditors. If, 

instead of 6, we employ an odd number n, we obtain an immediate solution with 

a,b,¢4.....V, as the first row, 4,4,d,_;.....€,@, aS the main diagonal, the scheme be- 

ing completed by permuting a, J, ¢, ....., v cyclically, and 1, 2, ....., n eyelically. 
Thus for n=3 we obtain the (single, notation apart) possible solution: 

3b, 

@, 

The problem is impossible for n=2. I proceed to show that there are exactly 
two distinct solutions for n=4. I first find the possible schemes for the letters. 

By interchange of columns, we may bring the a’s into the main diagonal. 
Call the first row abed. .If } is fourth in the second row, we interchange the third 

and fourth row, the third and fourth columns, and permute c, d, and get abed as 

‘ 
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the new first row, a’s in diagonal, and b third in second row. The scheme is 

then necessarily (1). If d is first in the second row, the scheme is either (II) or 
(II). 

abed abed abed 

(I) dabe (I) bade (il) bade 

cdab cdab dcab 

beda dcba cdba 

If in (III) we interchange the second and third columns, and also rows, and per- 

mute b, c, we get (1). 

We attach the subscripts to the letters of the first row in the order 1, 2, 3, 
4. The diagonal terms must be a,4,0,4, or a,a,a,a,. For (1), in the second 

row must be b, ; in the former case, d in the fourth row must be d, contrary to 
d of the first row; in the latter case, d in the fourth row must be d,, contrary to 

a of the fourth row. Hence (1) is excluded. For (II) the two schemes are 
evidently 

a, b, c, d, a, b,c, d, 

(A) 6; a, d, (B) a; 4, 
d, a, Co d, a, by 

d,c, & a, d, ¢, b, a, 

If we view the square (A) from the side, instead of the top, we get (B). 

If we reflect (A) on the main diagonal and then permute 2, 4, 3 cyclically, we 
obtain (B). But by no change of notation of letters or subscripts is (A) con- 
verted into (B). Note that the arrangements of the letters (as well as the sub- 
scripts) in (A) or (B) define the non-cyclic group of order 4. 

These results for n=4 and n odd suggest that for n=—6 the arrangements 

of the letters and subscripts might be derivable from those in the first row by 

means of the substitutions of the same regular group on six letters. But this is 

readily verified to be impossible. Hence if there is a solution for n=6, it is not 
a group solution of the type mentioned. ° 

PROBLEMS FOR SOLUTION. 

ALGEBRA. 

228. Proposed by G. W. GREENWOOD, M. A. (Oxon), Professor of Mathematics, McKendree College, Leba- 
non, Ill. 

Sum the infinite series 

93.25+ 35.377 47.49" 59.611 (Oxford, 1895}. 
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229. Proposed by B. F. YANNEY, Mount Union College, Alliance, 0. 

If a," +a,"=A", ........+a,"> or <A”, 

according as m< or >n; provided all the letters stand for positive real numbers. 

280. Proposed by G. W. GREENWOOD, M. A. (Oxon), Lebanon, Ill. 

Find the value of the determinant of n rows, 

3 2 

281. Proposed by 0. L. CALLECOT, Omaha. Neb. 

1 1 1 
934 

232. Proposed by F. P. MATZ, Sc. D., Ph. D., Reading, Pa. 

If one person out of 50 die annually and one person out of 30 is born an- 
nually, how long at this rate would be required for the population to treble itself? 

Sum to infinity: 

233. Proposed by J. J. KEYES, Fogg High School, Nashville, Tenn. 

At what time between 10 and 11 o’clock is the second hand of a clock one 
minute space nearer to the hour hand than it is to the minute hand? 

GEOMETRY. 

254. Proposed by W. J. GREENSTREET, M. A.. Editor of the Mathematical Gazette. Stroud. England. 

Find the cartesian equation to a line that is both tangent and normal to 

the cardioid. 

255. Proposed by J. SCHEFFER, A. M., Hagerstown, Md. 

Find the envelope of the straight line that connects the extremities of two 
conjugate diameters of an ellipse. 

256. Proposed by F. P. MATZ, Ph. D., Sc. D., Reading, Pa. 

The bisectors of the four angles of any quadrilateral intersect in four points, 
all of which lie on the circumference of the same circle. 

CALCULUS. 

194. Proposed by G. W. GREENWOOD, M. A. (Oxon), Lebanon, Ill. 

Show that the volume of the solid generated by the revolution of a seg- 
ment of a circle, less than a semi-circle, about the diameter parallel to its chord, 

is equal to that of a sphere having a diameter equal to the chord; and hence that 
the volume is independent of the magnitude of the original circle, the length of 
the chord being known. 
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195. Proposed by CHRISTIAN HORNUNG, Heidelberg University, Tiffin, 0. 

Given a right coae of altitude h and radius r, to locate the plane parallel 
to its side which bisects the cone. 

MECHANICS. 

175. Proposed by J. F. LAWRENCE, A. B., Professor of Mathematics, Oklahoma Agricultural College, Still- 
water, Oklahoma. 

A cylinder descends down a plane, the inclination of which to the horizon 
is a, unwrapping a fine string fixed at the highest point of the plane. Find the 
angle through which the plane must be depressed in order that a sphere, 
descending under like circumstances, may experience the same acceleration. 

176. Proposed by A. H. HOLMES, Brunswick, Me. 

A solid cube weighs 300 pounds. If a power is applied at an angle of 45° 

at an upper edge of the cube, how many foot-pounds will be required to overturn 

the cube? 

DIOPHANTINE ANALYSIS. 

126. Proposed by R. A. THOMPSON, M. A., C. E., Engineer Railroad Commission of Texas. 

Eight persons wish to play a series of games of progressive duplicate whist. 

In one evening, 12 boards are played, 4 boards (and return) by one couple against 

each of the other three couples, the same partners being retained throughout one 
evening. How many evenings will be required to complete the series, and what 

is the order of play, it being required that each player shall play with every other 
player as partner, and that each couple shall play once and but once against every 
other couple. 

AVERAGE AND PROBABILITY. 
— 

162. Proposed by F. P. MATZ, Ph. D., Sc. D., Reading, Pa. 

Two points are taken at random in the surface of a circle and a chord is 

drawn through them. Find the average area of the segment containing the cen- 
ter of the circle. 

GROUP THEORY. 

7. Proposed by M. E. GRABER, A. M., Heidelberg University, Tiffin, Ohio. 

Which linear substitution will transform 2,2, +2,7,+2,2,—0 into y+ 
ye ty? 

~ 
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MISCELLANEOUS. 

147. Proposea by F. P. MATZ, Ph. D., Sc. D., Reading. Pa. 

If P be a point within the scalene triangle, such that / PAB=/ PBO— 

ZPCA=¢, then and A + 
eosec? B+ cosec? C.........(2). 

Norg.—Problems and solutions in the departments of Geometry, Calculus, Mechanics, and Average 

and Probability should be sent to B. F. Finkel; and those in the departments of Algebra, Diophantine 

Analysis, Miscellaneous, and Group Theory should be sent to Dr. Saul Epsteen. Our contributors should 
carefully observe this notice if proper credit for contributions is to be given. 

NOTES. 

A list of one hundred mathematical models, made and for sale by Mr. R. 
P. Baker, 5519 Monroe Street, Chicago, Ill., has recently been issued. The 

models relate to solid geometry, linkages, crystallography, twisted cubies, eubie 

cones, scrolls, surfaces of the second order, ete. In view of the numerous orders 

received, Mr. Baker expects to devote his entire attention to the construction of 
models. D. 

F. Strobel of Jena, has compiled a directory of all living mathematicians, 
physicists, astronomers, and chemists. It will be published by the firm of J. A. 

Barth of Leipzig, and revised every two years. Ss. 

Mr. J. R. Hogan and Mr. E. Whitford have been appointed tutors 
in mathematics at the College of the City of New York. Ss. 

The medal of the Royal Society of London was awarded to Professor W. 
Burnside for his researches on the theory of groups. S. 

BOOKS. 

A College Algebra. Seventh Edition. By J. M. Taylor, A. M., LL. D., 
Professor of Mathematics in Colgate University. Boston and Chicago: Allyn 

and Bacon. 3863 pages. 
To the introductory work, covering the ground of a high school course, the author 

devotes the first hundred pages, the remainder of the book being devoted to subjects 
adapted to the first year at college. In Chapter XII-the fundamental notion of function- 

ality is introduced and briefly illustrated by means of simple examples. In this chapter 

the theory of limits is also developed. 

One of the chief merits of the book consists, in the opinion of the reviewer, of the 
introduction of the chapter on the derivatives of algebraic functions. The chapter on the 

development of functions in series, on convergency and divergency, logarithms and theory 
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of equations, are written in Dr. Taylor’s inimitable style. Chapter X VII on compound 

interest and annuities, however, treats the latter subject in the brief manner of most 

algebras, the annuities there considered are annuities certain and not contingent annuities 

based upon a mortality table. 8. E. 

The Essentials of Algebra. For Secondary Schools. By Robert J. Aley, 
Ph. D., and David R. Rothrock, Ph. D., Professors in the University of Indiana. 

Silver, Burdett & Co. 1904. 295+4vii pages. 
It was to be expected that as soon as the laboratory method of teaching mathemat- 

ics had been sufficiently developed, text-books adapted to this form of instruction would 

make their appearance. The present book is the first of this kind, and is exceedingly well 
adapted to laboratory courses in secondary schools. As might be expected under the cir- 

cumstances, the striking feature is the concreteness with which the subject is treated, 

principally through the chapters on graphic methods. Some of the most commendable 

characteristics of the book are the frequency with which diagrams are introduced, the ex- 

planation of Pascal’s Triangle in connection with the binomial theorem, and Argand’s 
representation of i=J(—1). 

The value of the book is enhanced and the pages rendered attractive to the eye by 
an excellent index, illustrative solutions of problems, and the frequent use of three differ- 

ent kinds of type. 

In the opinion of the reviewer, the words ‘“‘variable” and “‘constant” (p. 15, et seq) in 

the sense used are unfortunate; the words ‘‘unknown” and ‘‘parameter” being more suit- 

able for the purpose. As the text explains (p. 205) i==J(—1) may be interpreted as the 
unit on the axis at right angles to the axis of reals. Therefore, the term “imaginary” 

while sanctioned by usage and history, is undesirable. iis best regarded as the special 
complex number a+bi, where a=0, b=1. 

The authors enunciate without proof the theorem that the graph of a linear equa- 

tion in two variables is a’straight line,—probably with the idea that this proof should be 

delayed to a later period in the course, and that the young student feels intuitively con- 
vineed of their truth after having constructed the graphs of several such equations. 

We are indebted to the authors for an excellent text-book which combines the mer- 
its of the older texts with the recent advances in the pedagogy of mathematics. * 

March, 1905. Atma E. Kiunper. 

Elements of Mechanics. Forty Lessons for Beginners in Engineering. By 
Mansfield Merriman, Professor of Civil Engineering in Lehigh University. 

12mo, 172 pages, 142 figures. Cloth, $1.00 net. New York: John Wiley & 
Sons. 

The aim of this volume is the application of the best methods of applied mechanics 

to the development of the fundamental principles and methods of rational mechanics. 

“To this end, constant appeals are made to experience, by which alone the laws of 

mechanics can be established, numerous numerical problems are stated as exercises for 

the student, and a system of units is employed with which every boy is acquainted.” 

Preface. The book is one that will be useful in establishing the fundamental principles of 

theoretical and practical mechanics. B. F. F. 
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NOTE ON GROUPS OF ORDER* p*9’. 

By 0. E. GLENN, The University of Pennsylvania. 

The purpose of this note is to prove the following theorem: 
If a group G of order p*q? (p>q) has five distinct series of composition, all 

arrangements of the composition factors excepting (q, p, p,q) being posssble, then must 

q=2 and p=3. The only existent group is thus of order 36, and it is the direct prod- 
uct of the tetrahedron-group and a cyclic group of order 3. 

The invariant subgroup Hg*p is Abelian, and Hp?q is a divisible type 
{8,, 8,}{8,} defined by 

8,8,—8,8,, 8,8,—8,8,, 8,'8,;8,=8,*. 

The Sylow subgroup J,.—{8,,8,} isinvariant under H,,)and hence under 
G. Likewise {8,, S,} is self-conjugate in G@, and these two subgroups contain 
all the subgroups of G of orders q and p, respectively. The operator S, trans- 
forms {8,} into p conjugates within {8,, 8,}, and since the number of these 
cannot exceed 

+1 

it follows that p==-q+1, and therefore p=3, g=2. 
Hence a= —1 (mod 3), and the N,=3 subgroups are 

{8,}, {S,}, and {8,8,}. 

*Le Vavavasseur has given in Comptes Rendus, Vol. 128 arate Pp. 152, a list of the groups of order 
p’q*, the proofs having been suppressed. D.] 
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